3-D Charts

From Apache OpenOffice Wiki
Jump to: navigation, search

Some chart types can display a 3-dimensional representation. To switch a chart to 3-dimensional, set the boolean property Dim3D of the service com.sun.star.chart.Dim3DDiagram.

In addition to this property, bar charts support a property called Deep (see service com.sun.star.chart.BarDiagram) that arranges the series of a bar chart along the z-axis, which in a chart, points away from the spectator. The service com.sun.star.chart.Chart3DBarProperties offers a property SolidType to set the style of the data point solids. The solid styles can be selected from cuboids, cylinders, cones, and pyramids with a square base (see constants in com.sun.star.chart.ChartSolidType).

The XDiagram of a 3-dimensional chart is also a scene object that supports modification of the rotation and light sources. The example below shows how to rotate the scene object and add another light source.

  // prerequisite: maDiagram contains a valid bar diagram
  // ...
  import com.sun.star.drawing.HomogenMatrix;
  import com.sun.star.drawing.HomogenMatrixLine;
  import com.sun.star.chart.X3DDisplay;
  import com.sun.star.beans.XPropertySet;
  XPropertySet aDiaProp = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, maDiagram);
  Boolean aTrue = new Boolean(true);
  aDiaProp.setPropertyValue("Dim3D", aTrue);
  aDiaProp.setPropertyValue("Deep", aTrue);
  // from service Chart3DBarProperties:
  aDiaProp.setPropertyValue("SolidType", new Integer(
  // change floor color to Magenta6
  XPropertySet aFloor = ((X3DDisplay) UnoRuntime.queryInterface( 
      X3DDisplay.class, maDiagram)).getFloor();
  aFloor.setPropertyValue("FillColor", new Integer(0x6b2394));
  // rotate the scene using a homogen 4x4 matrix
  // -------------------------------------------
  HomogenMatrix aMatrix = new HomogenMatrix();
  // initialize matrix with identity
  HomogenMatrixLine aLines[] = new HomogenMatrixLine[] {
          new HomogenMatrixLine(1.0, 0.0, 0.0, 0.0),
          new HomogenMatrixLine(0.0, 1.0, 0.0, 0.0),
          new HomogenMatrixLine(0.0, 0.0, 1.0, 0.0),
          new HomogenMatrixLine(0.0, 0.0, 0.0, 1.0)
  aMatrix.Line1 = aLines[0];
  aMatrix.Line2 = aLines[1];
  aMatrix.Line3 = aLines[2];
  aMatrix.Line4 = aLines[3];
  // rotate 10 degrees along the x axis
  double fAngle = 10.0;
  double fCosX = Math.cos(Math.toRadians(fAngle));
  double fSinX = Math.sin(Math.toRadians(fAngle));
  // rotate -20 degrees along the y axis
  fAngle = -20.0;
  double fCosY = Math.cos(Math.toRadians(fAngle));
  double fSinY = Math.sin(Math.toRadians(fAngle));
  // rotate -5 degrees along the z axis
  fAngle = -5.0;
  double fCosZ = Math.cos(Math.toRadians(fAngle));
  double fSinZ = Math.sin(Math.toRadians(fAngle));
  // set the matrix such that it represents all three rotations in the order
  // rotate around x axis then around y axis and finally around the z axis
  aMatrix.Line1.Column1 = fCosY * fCosZ;
  aMatrix.Line1.Column2 = fCosY * -fSinZ;
  aMatrix.Line1.Column3 = fSinY;
  aMatrix.Line2.Column1 = fSinX * fSinY * fCosZ + fCosX * fSinZ;
  aMatrix.Line2.Column2 = -fSinX * fSinY * fSinZ + fCosX * fCosZ;
  aMatrix.Line2.Column3 = -fSinX * fCosY;
  aMatrix.Line3.Column1 = -fCosX * fSinY * fCosZ + fSinX * fSinZ;
  aMatrix.Line3.Column2 = fCosX * fSinY * fSinZ + fSinX * fCosZ;
  aMatrix.Line3.Column3 = fCosX * fCosY;
  aDiaProp.setPropertyValue("D3DTransformMatrix", aMatrix);
  // add a red light source
  // ----------------------
  // in a chart by default only the second (non-specular) light source is switched on
  // light source 1 is the only specular light source that is used here
  // set direction
  com.sun.star.drawing.Direction3D aDirection = new com.sun.star.drawing.Direction3D();
  aDirection.DirectionX = -0.75;
  aDirection.DirectionY = 0.5;
  aDirection.DirectionZ = 0.5;
  aDiaProp.setPropertyValue("D3DSceneLightDirection1", aDirection);
  aDiaProp.setPropertyValue("D3DSceneLightColor1", new Integer(0xff3333));
  aDiaProp.setPropertyValue("D3DSceneLightOn1", new Boolean(true));

Refer to Drawing Documents and Presentation Documents for additional details about three-dimensional properties.

Content on this page is licensed under the Public Documentation License (PDL).
Personal tools
In other languages